The verapamil transporter expressed in human alveolar epithelial cells (A549) does not interact with β2-receptor agonists.

نویسندگان

  • Johanna J Salomon
  • Carsten Ehrhardt
  • Ken-Ichi Hosoya
چکیده

  Affinity of different organs for verapamil is highly variable and organ-specific. For example, the drug exhibits high levels of accumulation in lung tissues. A transporter recognising verapamil as a substrate has previously been identified in human retinal pigment epithelial (RPE) and in rat retinal capillary endothelial (TR-iBRB2) cells. This transporter is distinct from any of the cloned organic cation transporters. Therefore, we hypothesised that the verapamil transporter is also functionally expressed in the human respiratory mucosa. Moreover, we tested the hypothesis that this transporter interacts with pulmonary administered cationic drugs such as β2-agonists. The uptake of [(3)H]verapamil was studied in A549 human alveolar epithelial cell monolayers at different times and concentrations. The influence of extracellular proton concentration and various organic cations on verapamil uptake was determined. Verapamil uptake into A549 cells was time- and concentration-dependent, sensitive to pH and had a Km value of 39.8 ± 8.2 µM. Verapamil uptake was also sensitive to inhibition by amantadine, quinidine and pyrilamine, but insensitive to other typical modulators of organic cation and choline transporters. Whilst we demonstrated functional activity of the elusive verapamil transporter at the lung epithelium, our data suggest that this transporter does not interact with β2-agonists at therapeutic concentrations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of cellular transport characteristics of the human lung alveolar epithelia

Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...

متن کامل

Modulation of cellular transport characteristics of the human lung alveolar epithelia

Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...

متن کامل

Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

BACKGROUND Proteinase-activated receptors (PARs; PAR1-4) that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the ...

متن کامل

The Potential Effect of Glycyrrhiza Glabra on Early Step of Influenza Virus Replication

Background and Aims: The emergence of drug-resistant influenza viruses has become a serious threat for human and animal populations. Glycyrrhiza glabra (Gg) is a traditional medicine clinically used for the treatment of viral respiratory infection symptoms in most countries. We evaluated the effects of the herb on influenza virus replication in human lung cultured cells (A549) following the det...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and pharmacokinetics

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 2014